

Catalytic Asymmetric [4 + 1] Annulation of Sulfur Ylides with Copper–Allenylidene Intermediates

Qiang Wang,[†] Tian-Ren Li,[†] Liang-Qiu Lu,^{*,†} Miao-Miao Li,[†] Kai Zhang,[†] and Wen-Jing Xiao^{*,†,‡}

[†]College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China [‡]State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China

Supporting Information

ABSTRACT: The first copper-catalyzed asymmetric decarboxylative [4 + 1] cycloaddition of propargylic carbamates and sulfur ylides was successfully developed. This strategy led to a series of chiral indolines with synthetically flexible alkyne groups in good yields and with high enantio- and diastereoselectivities (up to 99% yield, 98% ee, and >95:5 dr). A possible mechanism and stereoinduction mode with copper–allenylidenes were proposed as the possible dipolar intermediate.

T ransition-metal-catalyzed cycloaddition reactions have been the focus of extensive study because of their fundamental importance in organic, medicinal, and materials chemistry.¹ Many reactions proceed via metal-associated dipolar intermediates, which involve two independent reaction centers: one acts as an electrophile, and the other acts as a nucleophile. For example, various nucleophile-containing π -allyl–Pd complexes² (Figure 1a, type-I) and metallo-enolcarbenes^{1c,3} (type-II: M = Rh and Au) have been widely applied in transition-metalcatalyzed cycloadditions. To expand this cycloaddition chemistry, we applied asymmetric catalysis by earth-abundant metals to achieve the first example of formal [4 + 1] cycloaddition of

Figure 1. Cycloaddition reactions via metal-associated dipolar intermediates.

copper-allenylidene dipolar intermediates with high reaction yields and enantio- and diastereoselectivities (Figure 1c).

The metal-allenylidene species is a promising synthetic intermediate for organic chemists; it enables the integration of a synthetically flexible alkyne functional group.⁴ Over the past decade, Ru- or Cu-catalyzed asymmetric transformations of terminal propargylic alcohols and their derivatives have been extensively developed, particularly transformations involving asymmetric processes with excellent enantiocontrols.^{5,6} However, the cycloaddition reaction with metal-allenylidene dipolar intermediates has remained underdeveloped. The only such transformation which produced cycloaddition products in racemic form was disclosed in 2013 (Figure 1b). In that work, a Ru-catalyzed [3 + 2] cycloaddition of ethynyl cyclopropanes with aldehydes/aldimines was elegantly designed and wellimplemented using stoichiometric Lewis acids, which efficiently produced 2-ethynyltetrahydrofurans/pyrrolidines. Over the past few years, we have devoted our efforts to developing new methodologies using sulfur ylides, and we efficiently constructed various carbo- and heterocyclic systems beyond three-membered rings.^{8,9} In this work, we disclose the first example of catalytic asymmetric formal [4 + 1] cycloaddition of sulfur ylides with copper-allenylidene dipolar intermediates (Figure 1c). Using this protocol, we have produced a vast range of chiral indolines with synthetically flexible alkyne groups in high reaction efficiencies and selectivities, which is a complement to previous achievements.^{9c,d} Notably, this study represents one of the limited reports on the transition-metal-catalyzed asymmetric cycloadditions of sulfur ylides.¹¹

Initially, we performed the cycloaddition reaction of ethynyl benzoxazinanone 1a and benzoyl sulfur ylide 2a at room temperature (rt) in the presence of *i*-Pr₂NEt, Cu(OTf)₂ and chiral ligand *R*-BINAP (L1) in MeOH (Table 1, entry 1). The reaction did occur and produced the desired indoline product 3aa in *trans* configuration in good yield, albeit with low enantioselectivity (entry 1, 88% yield and 8% ee). Encouraged by this result, we evaluated chiral ligands widely used in Cucatalyzed asymmetric propargylic alkylation of propargyl esters for the present cycloaddition reaction (entries 2–7). Accordingly, the commercially available phenyl-substituted Pybox ligand L4 stood out as the superior choice, producing chiral indoline 3aa in 66% yield and 50% ee (entry 4). Investigation of the solvent effect revealed that THF provided the best reaction efficiency despite similar enantiocontrol (entry 8, 97% yield, 53%

 Received:
 April 29, 2016

 Published:
 June 29, 2016

Table 1. Selected Condition Optimization^a

O N Ts 1a	 + Ph O 2a: R² = 2b: R² = 	 S ⁻ R ² ligand (Me <i>i</i> -Pr ₂ NE Ph	(10 mol%) (11 mol%) t (1.2 eq.) OH, rt	N Ts 3aa
entry	ligand	time	yield (%) ^b	ee (%) ^c
1	L1	30 min	88	8
2	L2	30 min	36	36
3	L3	30 min	53	50
4	L4	30 min	66	50
5	L5	30 min	56	44
6	L6	30 min	32	-6
7	L7	30 min	35	-38
8 ^d	L4	40 min	97	53
$9^{d,e}$	L4	40 min	99	88
$10^{e,d,f}$	L4	16 h	99	92
$11^{d,f,g}$	L4	24 h	95(94) ^h	95

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Cu(OTf)₂ (10 mol %), **L** (11 mol %), and *i*-Pr₂NEt (1.2 equiv) in MeOH at rt. ^{*b*}Determined by ¹H NMR of the reaction mixture containing 1,3,5-trimethoxybenzene as an internal standard. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Using THF as the solvent. ^{*e*}Using sulfur ylide **2b**. ^{*f*}O °C. ^{*g*}Using sulfonium salt **4a** (0.2 mmol) and *i*-Pr₂NEt (3.2 equiv). ^{*h*}Isolated yields in parentheses. THF: tetrahydrofuran.

ee; see Table S2 in the Supporting Information for more details). To further improve the result, other sulfur ylides were tested (Table S3). As a result, sulfur ylide **2b**, in which one methyl group was replaced with a phenyl group, was converted into the same product **3aa** in 99% yield and 88% ee (entry 9). Decreasing the reaction temperature gave a slightly improved enantiose-lectivity with 99% yield at a prolonged reaction time (entry 10). When a simplified operation was applied using easily available sulfonium salt **4a** and excess of *i*-Pr₂NEt to in situ generate sulfur ylide **2b**, the enantioselectivity increased to 95% ee with 94% isolated yield.

With the optimal conditions in hand, we examined the scope of sulfonium salts for this cycloaddition reaction. As summarized in Table 2, excellent levels of yield, diastereo-, and enantioselectivity were obtained using sulfonium salts with various substituents on the benzene ring (entries 1–10). Substrates with electron-withdrawing groups (e.g., NO_2 , CN) and those with fluoro, chloro, bromo, and methyl at the 4-position were transformed into chiral indoline products with high efficiency and selectivity (**3aa-3ag**: 92–99% yields, 90–98% ee, and >95:5 dr). Precursors with various substituent positions on the sulfonium salts, such as 3-bromo (**4h**), 2-fluoro (**4i**), and 2,4-difluoro (**4j**), tolerated this cycloaddition and were converted into the corresponding products with good results (**3ah-3aj**: 97–99% yields, 90–94% ee, and >95:5 dr). In

Table 2. Scope of Sulfonium Salts^a

\bigcirc	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	Cu(OTf); L4 (1 <i>i</i> -Pr ₂ NE	2 (10 mol%) 1 mol%) Et (3.2 eq) 5, 0 °C	N N Ts 3aa-ap > 95:5 dr
entry	4: R'	3	yield (%) ^b	ee (%) ^c
1	4a : C ₆ H ₅	3aa	94	95
2	4b : 4-NO ₂ -C ₆ H ₄	3ab	98	96
3	4c : 4-CN-C ₆ H ₄	3ac	99	94
4	4d : 4-F-C ₆ H ₄	3ad	$99(99)^{d}$	$94(92)^{d}$
5	4e : 4-Cl-C ₆ H ₄	3ae	92	98
6	4f : 4-Br-C ₆ H ₄	3af	93	96
7^e	4g : 4-Me-C ₆ H ₄	3ag	96	90
8	4h : 3-Br-C ₆ H ₄	3ah	97	94
9	4i : 2-F-C ₆ H ₄	3ai	99	90
10	4j : 2,4-F ₂ C ₆ H ₄	3aj	97	93
11	4k: 2-thienyl	3ak	95	84
12 ^f	41: 2-benzofuryl	3al	90	94
13 ^f	4m: methyl	3am	95	91
14	4n: cyclopropyl	3an	99	92
15	40: cyclohexyl	3ao	90	95
16	4p : <i>i</i> -Bu	3ap	95	93

^{*a*}Unless otherwise noted, reactions were performed at 0.2 mmol scale as in Table 1, entry 11. ^{*b*}Isolated yield. ^{*c*}Determined by a chiral HPLC analysis. ^{*d*}Gram-scale reaction was performed with 1.0 g of 1a and 2.3 g of 4d in 28 h, and 1.26 g of 3ad was obtained (some results are given in parentheses). ^{*c*}Corresponding sulfur ylide was used. ^{*f*}Tetrafluoroborate sulfonium salt was used.

addition, identical transformation with heteroaryl-substituted sulfonium salts **4k** and **4l** also proceeded notably well and produced **3ak** and **3al** in 95 and 90% yields with 84 and 94% ee, respectively (entries 10 and 11). Significantly, success of this transformation was further extended to aliphatic sulfonium salts (entries 13–16). For example, substrates with methyl (**4m**), cyclopropyl (**4n**), cyclohexyl (**4o**), and *i*-butyl (**4p**) reacted well with ethynyl benzoxazinanone **1a** in the chiral copper catalyst system and produced chiral indoline products **3am**–**3ap** in 90–99% yield, 91–95% ee, and >95:5 dr.

We next explored the cycloaddition reaction of sulfonium salt 4a with various ethynyl benzoxazinanones (Table 3). Use of substrates with a bromo (1b), methyl (1c), or methoxyl (1d) group at the 6-position gave the corresponding products in high yields and with great enantioselectivities (3ba-3da: 95-99% yields, 81-91% ee, and >95:5 dr). Introducing a chlorine atom (1e) to the 7-position of ethynyl benzoxazinanone yields the corresponding product 3ea in excellent stereocontrol (entry 5, 99% yield, 95% ee, and >95:5 dr). Similarly, addition of a trifluoro group to the 7-position of the ethynyl benzoxazinanone was compatible with the present catalyst system, converting into desired product 3fa in an excellent reaction efficiency and selectivity (entry 6, 96% yield, 94% ee, and >95:5 dr). Substrates with a fluoro atom at the 5- and 8-positions were tested under the optimal conditions. Fluoro-incorporated chiral indolines 3ga and 3ha were obtained in good yields and with high enantiocontrol (entry 7, 93% yield, 80% ee, and >95:5 dr; entry 8, 82% yield, 88% ee, and >95:5 dr). Relatively low enantiomeric excess of 3ga was probably attributed to the steric effects of the F-substituent at the 5-position. Moreover, we have successfully used this Cucatalyzed asymmetric cycloaddition to prepare chiral pyrroli-

 Table 3. Scope of Ethynyl Benzoxazinanones^a

^{*a*}Unless otherwise noted, reactions were performed at 0.2 mmol scale as in Table 1, entry 11. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Sulfur ylide **2b** was used.

dines. For example, reactions of ethynyl carbamate 5 with sulfonium salts 4a and 4f could afford the corresponding pyrrolidine 6 and 7, which were produced in high enantio- and diastereoselectivity, respectively (eq 1).

Synthetic transformations were performed to demonstrate the utility of this method. For example, a copper-catalyzed 1,3-dipolar cycloaddition of **3aa** with TsN_3 produced 1,2,3-triazole-substituted chiral indoline **8** in 99% yield with retained enantiopurity (Scheme 1a). Although the active sulfur ylides

were not suitable for this cycloaddition,¹² the deoxygenation operation of the products with triethyl silane and boron trifluoride (e.g., **3aa**) produced the indoline with an alkyl group at the 2-position in good results (Scheme 1b, 9: 70% yield, 95% ee, and >95:5 dr). A Pd/Cu-catalyzed sequence reaction can easily convert **9** into a 2-indole-substituted chiral indoline **10** in 65% yield without significant loss in enantiopurity (Scheme 1b, Communication

10).¹³ Treatment of **10** with magnesium powder afforded the N-free 2-indole-substituted indoline **11** with high yield (Scheme 1b, **11**).

A nonlinear relationship between the enantiopurity of product **3aa** and ligand **L4** was clearly observed in the copper-catalyzed asymmetric cycloaddition of **1a** with **4a** (Figure S1). This result indicates that a dinuclear complex of copper salts and chiral ligand may function as an active catalytic species to promote this transformation according to previous works.¹⁴ A plausible mechanism is proposed in Scheme 2. First, the copper complex

Scheme 2. Proposed Mechanism

likely activates the alkyne part of substrate 1a by forming a π complex A, which generates the copper–acetylide species B upon deprotonation with *i*-Pr₂NEt. Then, a copper–allenylidene intermediate C, which is stabilized by its resonance form C', is generated through a CO₂ extrusion process. Subsequently, the selective capture of sulfur ylide 2b by intermediate C forms the transient species D, which converts into copper-containing cycloadduct E via an intramolecular S_N2 reaction. Finally, the chiral indoline is produced through a proton transfer process, and the dinuclear copper catalyst is simultaneously regenerated.

The absolute configuration of the indoline products was unambiguously determined to be S_rS on the basis of the X-ray crystallographic analysis of **3af** (Figure S2).¹³ The stereocontrol that led to this isomer might be rationalized with Maarseveen's model of cooperative catalysis (Figure 2b),¹⁴ which was established according to crystallographic results (Figure 2a).^{14b,15} The propargylation step possibly favors the *re*-face

Figure 2. Possible asymmetric induction mode.

attack of the copper-allenylidene complex by sulfur ylides, where the sulfur ylide reacts with its *re*-face.

In conclusion, we developed a copper-catalyzed asymmetric formal [4 + 1] cycloaddition for the first time by trapping copper–allenylidene dipolar intermediates with sulfur ylides. Thus, a new approach to chiral indoline products and related cycloadducts with high reaction yields and stereoselectivities (up to 99% yield, 98% ee and >95:5 dr) was explored. Mechanistic studies suggest that this reaction is a sequence process that involves decarboxylative propargylation/ S_N 2 reactions promoted by dinuclear copper complexes. Further studies with this type of metal-associated dipolar intermediate are currently in progress.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b04414.

X-ray data for **3af** (CIF) X-ray data for **10** (CIF) Experimental procedures; spectral data (PDF)

AUTHOR INFORMATION

Corresponding Authors

*luliangqiu@mail.ccnu.edu.cn *wxiao@mail.ccnu.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (Nos. 21232003, 21472057, and 21572074) and other financial support (Nos. 201422, CCNU15A02007, and 2015CFA033) for this research.

REFERENCES

 (a) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2001. (b) Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
 (c) Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396. (d) Chen, J.-R.; Hu, X.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 4038.

(2) (a) Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 2012, 134, 17823. (b) Khan, A.; Zheng, R.; Kan, Y.; Ye, J.; Xing, J.; Zhang, Y.-J. Angew. Chem., Int. Ed. 2014, 53, 6439. (c) Ohmatsu, K.; Imagawa, N.; Ooi, T. Nat. Chem. 2014, 6, 47. (d) Xu, C.-F.; Zheng, B.-H.; Suo, J.-J.; Ding, C.-H.; Hou, X.-L. Angew. Chem., Int. Ed. 2015, 54, 1604.

(3) (a) Guzmán, P. E.; Lian, Y.; Davies, H. M. L. Angew. Chem., Int. Ed. 2014, 53, 13083. (b) Cheng, Q.-Q.; Yedoyan, J.; Arman, H.; Doyle, M. P. J. Am. Chem. Soc. 2016, 138, 44 and refs therein.

(4) (a) Ljungdahl, N.; Kann, N. Angew. Chem., Int. Ed. 2009, 48, 642.
(b) Detz, R. J.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem.
2009, 2009, 6263. (c) Miyake, Y.; Uemura, S.; Nishibayashi, Y. ChemCatChem 2009, 1, 342. (d) Ding, C.-H.; Hou, X.-L. Chem. Rev.
2011, 111, 1914. (e) Nishibayashi, Y. Synthesis 2012, 44, 489. (f) Bauer, E. Synthesis 2012, 44, 1131. (g) Hu, X.-H.; Liu, Z.-T.; Shao, H.; Hu, X.-P. Synthesis 2015, 47, 913. (h) Zhang, D.-Y.; Hu, X.-P. Tetrahedron Lett.
2015, 56, 283.

(5) For selected examples of Ru catalysis, see: (a) Inada, Y.; Nishibayashi, Y.; Uemura, S. Angew. Chem., Int. Ed. 2005, 44, 7715.
(b) Ikeda, M.; Miyake, Y.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2010, 49, 7289. (c) Senda, Y.; Nakajima, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2015, 54, 4060.

(6) For selected examples of Cu catalysis, see: (a) Detz, R. J.; Delville, M. M. E.; Hiemstra, H.; van Maarseveen, J. H. Angew. Chem., Int. Ed.

2008, 47, 3777. (b) Hattori, G.; Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2008, 47, 3781. (c) Fang, P.; Hou, X.-L. Org. Lett. 2009, 11, 4612. (d) Yoshida, A.; Ikeda, M.; Hattori, G.; Miyake, Y.; Nishibayashi, Y. Org. Lett. 2011, 13, 592. (e) Zhang, C.; Hu, X.-H.; Wang, Y.-H.; Zheng, Z.; Xu, J.; Hu, X.-P. J. Am. Chem. Soc. 2012, 134, 9585. (f) Zhu, F.-L.; Zou, Y.; Zhang, D.-Y.; Wang, Y.-H.; Hu, X.-H.; Chen, S.; Xu, J.; Hu, X.-P. Angew. Chem., Int. Ed. 2014, 53, 1410. (g) Zhu, F.-L.; Wang, Y.-H.; Zhang, D.-Y.; Xu, J.; Hu, X.-P. Angew. Chem., Int. Ed. 2014, 53, 10223. (h) Shao, W.; Li, H.; Liu, C.; Liu, C. J.; You, S. L. Angew. Chem., Int. Ed. 2015, 54, 7684.

(7) Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758.

(8) (a) McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. *Chem. Rev.* **2007**, *107*, 5841. (b) Sun, X.-L.; Tang, Y. *Acc. Chem. Res.* **2008**, *41*, 937. (c) Li, G.-C.; Wang, L.-Y.; Huang, Y. *Chin. J. Org. Chem.* **2013**, *33*, 1900.

(9) For recent work on sulfur ylides from our group, see: (a) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. **2012**, 45, 1278. (b) Yang, Q.-Q.; Xiao, C.; Lu, L.-Q.; An, J.; Tan, F.; Li, B.-J.; Xiao, W.-J. Angew. Chem., Int. Ed. **2012**, 51, 9137. (c) Li, T.-R.; Tan, F.; Lu, L.-Q.; Wei, Y.; Wang, Y.-N.; Liu, Y.-Y.; Yang, Q.-Q.; Chen, J.-R.; Shi, D.-Q.; Xiao, W.-J. Nat. Commun. **2014**, 5, 5500. (d) Wang, Q.; Qi, X.; Lu, L.-Q.; Li, T.-R.; Yuan, Z.-G.; Zhang, K.; Li, B.-J.; Lan, Y.; Xiao, W.-J. Angew. Chem., Int. Ed. **2016**, 55, 2840.

(10) For select examples on the biological significance and synthesis of chiral indolines, see: (a) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. *Angew. Chem., Int. Ed.* **2011**, *50*, 10661. (b) Duan, Y.; Li, L.; Chen, M.-W.; Yu, C.-B.; Fan, H.-J.; Zhou, Y.-G. J. Am. Chem. Soc. **2014**, *136*, 7688. (c) Romano, C.; Jia, M.; Monari, M.; Manoni, E.; Bandini, M. *Angew. Chem., Int. Ed.* **2014**, *53*, 13854.

(11) (a) Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.; Bolm, C. J. Am. Chem. Soc. **2012**, 134, 6924. (b) Huang, X.; Klimczyk, S.; Veiros, L. F.; Maulide, N. Chem. Sci. **2013**, 4, 1105. (c) Klimczyk, S.; Misale, A.; Huang, X.; Maulide, N. Angew. Chem., Int. Ed. **2015**, 54, 10365 and ref 9c..

(12) Phenyl-substituted sulfur ylide and Corey ylide were tested, but only the fast decomposition of substrate **1a** was observed.

(13) CCDC 1471938 and CCDC 1450138 contain the crystallographic data of **10** and **3af**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data request/cif.

(14) (a) Detz, R. J. Triazole-based P,N ligands: discovery of an enantioselective copper catalyzed propargylic amination reaction. Ph.D. thesis, 2009. (b) Nakajima, K.; Shibata, M.; Nishibayashi, Y. J. Am. Chem. Soc. **2015**, 137, 2472.

(15) (a) Díez, J.; Gamasa, M. P.; Panera, M. *Inorg. Chem.* **2006**, *45*, 10043. (b) Panera, M.; Díez, J.; Merino, I.; Rubio, E.; Gamasa, M. P. *Inorg. Chem.* **2009**, *48*, 11147.